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ABSTRACT

Retrievals of satellite-observed emissions of atmospheric pollutants and greenhouse gases provide essential inform-
ation and data for understanding the sources of these key atmospheric compositions and for implementing precise
emission control measures. Over the past two decades, significant progress has been made in the field of emission in-
version, with Chinese researchers playing a substantial role. In celebration of the 100th anniversary of the Chinese
Meteorological Society and Acta Meteorologica Sinica, this paper systematically reviews the advances in satellite-
based emission inversion research by Chinese scientists during this period. (1) Several widely used inversion method-
ologies, including data assimilation, local mass balance, Gaussian models, two-dimensional (2D) models, and ma-
chine learning, are briefly summarized. (2) Emission inversion studies focusing on major atmospheric pollutants—
such as nitrogen oxides (NO,), ammonia (NH;), formaldehyde (HCHO), glyoxal (CHOCHO), sulfur dioxide (SO,),
and carbon monoxide (CO)—as well as greenhouse gases like carbon dioxide (CO,) and methane (CH,), are system-
atically elaborated. (3) Finally, the historical evolution of inversion methods and target species, challenges in current
satellite-based emission inversion, and future research directions are discussed to promote more accurate quantifica-
tion of atmospheric pollutants and greenhouse gas emissions. It is worth noting that contributions from Chinese re-
searchers have provided critical scientific support to environmental protection and carbon neutrality efforts in China.
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chemical reactions or form fine particulate matter (PM; 5)

Anthropogenic activities, such as fossil fuel and bio-
fuel combustion and fertilizer application, have resulted
in a significant increase in the emission of air pollutants,
including nitrogen oxides (NO,), ammonia (NHj3), volat-
ile organic compounds (VOCs), sulfur dioxide (SO,),
and carbon monoxide (CO). These pollutants harm the
environment and can generate ozone (Os) through photo-

via gas-to-particle conversion processes, posing serious
threats to public health and ecosystems. Previous studies
(Xu et al., 2023; Chen X. K. et al., 2024) estimated that
over 1 million premature deaths may have occurred an-
nually in China due to exposure to O; and PM, s, and the
impacts are expected to exacerbate with the aging popu-
lation. Moreover, anthropogenic activities have resulted
in a rapid surge in the concentrations of greenhouse gases
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(GHGs), such as carbon dioxide (CO,) and methane
(CHy), with atmospheric CO, mixing ratios rising from
280 ppm in the pre-industrial era to 423 ppm in 2023 (see
NASA report at https://climate.nasa.gov/vital-signs/car-
bon-dioxide/?intent=121). The rapid increase in GHG
concentrations and the resulting greenhouse effect has
led to global warming and more frequent extreme events
(Hoegh-Guldberg et al., 2019; Thackeray et al., 2022).

In addition to anthropogenic activities, natural pro-
cesses also significantly impact atmospheric environ-
ment through emissions and sinks. For example, emis-
sions from lightning and soils are important sources of
NO, (Lu et al., 2021b; Pérez-Invernén et al., 2023); ve-
getation emits substantial biogenic VOCs (Wang F. et al.,
2021); volcanic activities release large amounts of SO,
into the atmosphere (Beckett et al., 2022); and wildfires
serve as a dual source of air pollutants and GHGs (Burke
et al., 2023; Zheng et al., 2023). Furthermore, global ter-
restrial CO, sinks offset approximately 34% of CO,
emissions from fossil fuel use and land-use changes in
2013-2022 (Friedlingstein et al., 2023). Therefore, ac-
curate assessment of emissions of atmospheric pollutants
and GHGs (including sinks) is crucial for understanding
their evolution in the atmosphere and their environment-
al and climate impacts, as well as for policymaking on
emission control and sustainability.

The concentrations, emissions and sinks of air pollut-
ants and GHGs can be indirectly inferred through remote
sensing with satellite instruments. With the recent rapid
advancement in satellite remote sensing instruments and
retrieval algorithms, satellite ‘observations have been
widely applied to studying the spatiotemporal variations
in air pollutants and GHGs, offering unprecedented op-
portunities for top-down quantification of emissions. The
resulting top-down emission data complement traditio-
nal bottom-up approaches based on emission inventories
and process models, which often face limitations in ac-
curacy, spatiotemporal resolution, and timeliness.

Operational satellite sensors include polar-orbiting in-
struments, such as the Ozone Monitoring Instrument
(OMI; Boersma et al., 2007), TROPOspheric Monitor-
ing Instrument (TROPOMI; van Geffen et al., 2020),
Measurement Of Pollution In The Troposphere (MO-
PITT; Deeter et al., 2003), and Green-house gas Ob-
serving Satellite (GOSAT; Butz et al., 2011), as well as
geostationary orbit instruments, such as the Geostation-
ary Environmental Monitoring Spectrometer (GEMS;
Kim et al., 2020) and Tropospheric Emissions: Monitor-
ing of Pollution (TEMPO; Zoogman et al., 2017).

Over the past decade, China has launched a constella-
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tion of advanced satellite sensors, such as the Environ-
ment Monitoring Instrument (EMI; Zhang C. X. et al,,
2020), Geostationary Interferometric Infrared Sounder
(GIIRS; Zeng et al., 2023), Ozone Monitoring Suite
(OMS; Wang Q. et al., 2024), Exploratory Satellite for
Atmospheric CO, (TanSat; Liu et al., 2018), and the
world’s first active CO, remote sensing satellite, i.e., the
Atmospheric Environment Monitoring Satellite (DQ-1;
Han et al., 2018). These have established China’s initial
capability for domestic satellite-based atmospheric com-
position monitoring and emission quantification.

Satellite-based emission inversion for air pollution and
GHGs has undergone remarkable advancements over the
past two decades. Early studies, which were constrained
by inadequate satellite spatial coverage and/or revisit fre-
quency, predominantly focused on emission quantifica-
tion at coarse spatiotemporal resolutions (Jiang et al.,
2017; Miyazaki et al., 2020; Zhang Y. et al., 2021; Qu et
al., 2022; Wang H. M. et al., 2022). The advent of high-
precision polar-orbiting platforms like TROPOMI in re-
cent years has enabled kilometer-level, daily-scale emis-
sion inversions (Kong H. et al., 2022; Li H. et al., 2023;
Qin et al., 2023a; Zhang Q. Q. et al., 2023; Tang et al.,
2024a), while emerging geostationary satellites are now
advancing inversion capabilities with enhanced temporal
resolution for diurnal variation (Shu et al., 2022; Watine-
Guiu et al., 2023; Hsu et al., 2024). This technological
evolution thus positions rapid high-resolution satellite-
based emission inversion as a critical frontier in atmo-
spheric research.

From the perspective of emission inversion method,
early inversion studies were limited by computational re-
sources, and they relied primarily on simplified ap-
proaches, such as three-dimensional variational (3D-Var)
methods and local mass balance techniques (Arellano et
al., 2004; Fu et al., 2007; Jones et al., 2009; Lamsal et
al., 2011; Lin and McElroy, 2011). Driven by advances
in computer technology, sophisticated data assimilation
systems, including four-dimensional variational (4D-Var)
and ensemble Kalman filters, have gained widespread
adoption (Jiang et al., 2015; Wang Y. et al., 2020; Jiang
F. et al., 2022; He et al., 2023b; Jin et al., 2023). To meet
growing demands for high-resolution inversions, compu-
tationally efficient methods such as Gaussian models
(Beirle et al., 2011; Liu et al., 2016), two-dimensional
(2D) divergence models (Beirle et al., 2019; Qin et al.,
2023a) and 2D chemical transport models (Kong et al.,
2019) have undergone rapid development. Most recently,
researchers are actively exploring machine learning tech-
niques (Huang et al., 2021; He T. L. et al., 2022; Li and
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Xing, 2024) to achieve further breakthroughs in compu-
tational efficiency and/or spatiotemporal resolution.
In recent years, a series of advancements in satellite-
based inversion, driven by Chinese researchers, has
greatly improved our ability to quantify the spatiotem-
poral patterns and evolution of atmospheric pollutant
emissions (Lin and McElroy, 2011; Jin et al., 2023; Qin
et al., 2023a; Zuo et al., 2023) and characteristics of
GHG sources and sinks (Zheng et al., 2020b; Zhang Y. et
al., 2021; He et al., 2023b; Shen et al., 2023). Relevant
studies focused on the rapidly evolving global atmo-
spheric conditions (Li et al., 2020, Jiang Z. et al., 2022;
Huang et al., 2023) and China’s own satellite observa-
tion capabilities (Han et al., 2018; Liu et al., 2018; Han et
al., 2020; Zhang P. et al., 2021, Su et al., 2022; Zeng et
al., 2023), making important contributions to the aca-
demic development and environmental governance.

To commemorate the 100th Anniversary of the Chinese
Meteorological Society, this review synthesizes two dec-
ades of Chinese research achievements in satellite-based
emission inversion, based on comprehensive literature
survey using targeted keyword combinations (species
names + “emission”/“inversion” + “satellite”), comple-
mented by the authors’ known literature collection. Our
synthesis includes a summary of inversion methodolo-
gies, including data assimilation, local mass balance,
Gaussian models, 2D models, and machine learning; as
well as key findings on emission inversions for NO,,
NH;, SO,, CO, formaldehyde (HCHO; a VOC tracer),
glyoxal (CHOCHO; ano-ther VOC tracer), CO, (includ-
ing sources and sinks), and CH,. The historical evolu-
tion of satellite-based inversion methods and target spe-
cies, current challenges and future perspectives are fur-
ther discussed lastly.

2. Emission inversion methodology

As a top-down approach, emission inversion uses at-
mospheric observations from satellites and other plat-
forms to inversely estimate emissions of air pollutants
and GHGs. The methodologies can generally be summar-
ized into two categories. The first category requires a pri-
ori emission data (typically provided by bottom-up emis-
sion inventories or process models) and three-dimensio-
nal chemical transport models, mainly including data as-
similation, simplified methods such as local mass bal-
ance, as well as machine learning-based methods which
are currently in the early development stage. The second
category operates without a priori emission data and
chemical transport models, by leveraging concentration
observations and meteorological data to derive emis-
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sions through Gaussian plume models or two-dimensio-
nal model approaches. This section provides a summary
of the inversion methods.

2.1 Data assimilation

Data assimilation has a wide range of applications in
Earth sciences. The various data assimilation methods
share a common mathematical foundation, which can be
traced back to Bayes’ theorem, typically expressed math-
ematically as:

P(ylx)P(x)

Py
where P(x[y) represents the a posteriori conditional prob-
ability density function to be characterized, P(x) and P(y)
are the a priori probability density functions of variables
x and y, respectively, and P(y|x) is the likelihood func-
tion of variable y given parameter x. The goal of data as-
similation is to find the optimal solution of x that maxim-
izes P(x|y) given the available information about y.

In emission inversion, x represents the emissions of
pollutants and GHGs to be optimized, and y corresponds
to the observed concentrations. For carbon sink inver-
sion, x represents the carbon fluxes. Assuming that all
probability density functions are Gaussian distributions,
P(x|y) can be expressed as (Rodgers, 2000):

P(xly) = (M

1
InP(xly) == 5| (F(x) -8 (F(x)-y)

+(x—x) S (x—x) [+ = —%J(x)+c. )

Here, F represents the relationship between x and y,
often characterized by atmospheric chemical transport
models or other physics-based models with varying com-
plexity; x, represents the a priori emissions; Sy and S,
denote the observational error covariance (from uncer-
tainties in measurements and model simulations) and the
a priori error covariance, respectively; and J is the cost
function. The target of data assimilation is to obtain op-
timized emission estimates corresponding to the minim-
ized cost function. By setting the gradient of the cost
function to zero:

VoJ(x) =2V, F'SsH(F () -y) +28; (x—x)=0.  (3)

The posteriori emissions can be analytically solved as
(Rodgers, 2000):

— _ 1\ _
T=x,+(VoF'Sg Ve F+871) Ve FTSS (F(xa)-y). (4)

Based on this analytical approach, a 3D-Var emission
inversion method can be constructed. The 3D-Var ap-
proach faces significant limitations in large-scale emis-
sion inversions, primarily due to difficulties in formulat-
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ing the Jacobian matrix (V,F), and its inherent neglect of
temporal dependencies (i.e., the temporal differences
between emissions and observed concentrations). To
overcome these methodological constraints, the 4D-Var
method was developed, with its cost function reformu-
lated as (Elbern et al., 2000; Henze et al., 2007):

N
J@) =) (Fe(®)-») "S5 (Fi(x)-y)
k=1

+(x —xa)TS;1 (x—x,).

®)

where k represents the time steps from the start to the end
of the assimilation period. The gradient of the cost func-
tion can be expressed as:

N
Vel (x) = Z[zs;(Fk (x)—y)? +28; (x—x,). (6)
k=1 *

Unlike the analytical solution, the 4D-Var method
does not require an explicit construction of Jacobian
matrices and calculates the sensitivity of concentrations
to emissions through backward simulation (adjoint mod-
eling), where I represents an unit matrix :

OFc _ OF; 0Fi,
0x - 6Fk_1 ox '

(7

A series of methodological innovations in variational
approaches have been conducted by Chinese researchers.
For example, Kong et al. (2019) developed a 2D atmo-
spheric chemistry transport model (PHLET) and its ad-
joint model, achieving fast, kilometer-scale resolution
emission inversion; and Tang et al. (2023) extended the
widely used GEOS-Chem adjoint model by adding sup-
port for multiple meteorological datasets and prior emis-
sion data, for better assessing prior data-induced errors in
emission inversion.

The 4D-Var method often requires adjoint models of
3D chemical transport models, which can be challenging
to develop and maintain. To address this issue, ensemble
methods have been used to quantify uncertainties, motiv-
ating -the application of ensemble Kalman filters. The
cost function in ensemble Kalman filters is formulated as
(Hunt et al., 2007; Miyazaki et al., 2012):

T
Jw) =|F (3" +X°w)- y] S5 [F (X +X"w)-y]

+ (k= wTw.

®)

Here, w represents a Gaussian random perturbation
vector with a mean of 0 and an ensemble size of %, i.e.,
we assume that the a priori ensemble members are ran-
domly sampled around the true model state x. The mat-
rix X® indicates the spread of the a priori ensemble mem-
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bers. The optimized a posteriori emissions are also ob-
tained by setting the gradient of the cost function to zero.

In contrast to 4D-Var, which calculates the sensitivity
of concentrations to emissions through backward simula-
tion, the ensemble Kalman filter establishes the relation-
ship between concentrations and emissions through per-
turbing the a priori emissions; thus, the accuracy is influ-
enced by the size of the perturbation ensemble. Addition-
ally, the sensitivity of concentrations to emissions in re-
mote regions over long distances may result in unphysi-
cal spatial correlations. Thus the spatial range of correla-
tions is often constrained in practical applications. The
inversion results from ensemble Kalman filters thus pre-
dominantly  reflect (quasi-) local-scale discrepancies
between model simulations and observational data, with
limited consideration of the long-range transport of air
pollutants and GHGs.

2.2 Local mass balance approach

Data assimilation’s inherent limitations, stemming
from complex inversion frameworks and intensive com-
putational requirements, have motivated the advance-
ment of simplified approaches. The local mass balance
approach is frequently applied to the emission inversion
of short-lived atmospheric pollutants. Given their short
atmospheric lifetimes, inter-grid transport becomes negli-
gible under coarse spatial resolution, and thus only the
(local) mass balance within each grid box needs to be
considered. The estimation of emissions can be simpli-
fied as (Martin et al., 2003; Lin and McElroy, 2011):

E_Q
E. Q)
or
AE AQ
— =BXx—, 9
E T ©

where E, represents the a priori emissions in the grid
box, @, refers to the column concentrations simulated by
model and the a priori emissions, £ is the a posteriori
emissions, 2 denotes the satellite-observed column con-
centration, AQ represents the difference between ob-
served and simulated column concentrations, S repres-
ents the model-based sensitivity of grid-specific column
concentration to emission changes, and AE represents the
optimized adjustment made to the a priori emissions.

2.3 The Gaussian model and the 2D divergence model

Gaussian models are broadly applied in the inversion
of pollutant and GHG emissions from isolated point
sources (e.g., power plants and factories) or quasi-point
sources (e.g., cities). These methods are independent of
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chemical transport models and use Gaussian models to fit
the distribution of observed concentrations (M) in re-
gions downwind of point sources, combining wind in-
formation from meteorological assimilation datasets
(Beirle et al., 2011; Liu et al., 2016):

M(x)=EXx(e®G)(x)+B,

e(x)= exp(—%),

1 x?

o)
Here, E represents the point source emission rate, e(x)
represents the transport and chemical decay of pollutants
and GHGs driven by the wind fields, x denotes the posi-
tion downwind of the point source, X is the position of
the point source, xo is the e-folding decay distance that
depends on wind speed and the lifetime of chemical spe-
cies of interest, B represents the background concentra-
tion in the region, G (x) stands for atmospheric diffusion
to be convolved with the exponential term, and ‘o repres-
ents the standard deviation as well as the spatial smooth-
ing parameter.

The 2D divergence model is another approach for
emission inversion that does not require ‘chemical trans-
port models. The general idea of the divergence model is
to balance local emissions, horizontal transport, and sinks
on a daily basis (Beirle et al., 2019; Qin et al., 2023a):

(10)

Gx)=

E:V-(CV)+§. (11)

where E stands for the emissions of chemical species, C
represents the observed concentrations, V is the horizon-
tal wind vector, and 7 represents the atmospheric life-
time of the chemical species. Atmospheric transport is
parameterized by horizontal divergence of the flux (CV)
of chemical species, where divergence and convergence
stand for outward and inward transport, respectively. The
divergence model often assumes that the atmospheric
lifetimes are constant in time and space. As a result, the
quality of emission inversion via the divergence model
can vary significantly over different regions and time
periods, especially for chemically active and highly non-
linear atmospheric constituents (e.g., NO,). For instance,
under certain conditions, the divergence model can lead
to negative emissions, which reflect a major limitation of
the approach. Efforts have been made to improve the 2D
divergence model. For example, Qin et al. (2023a) con-
sidered temporal variations and flexibly fitted the para-
meters of the first-order chemical decay and transport
terms to better estimate the impact of local chemical
transport processes.

Jiang, Z., J. T. Lin, T. L. He, et al. 5

2.4 Machine learning

The complexity ‘of physics-based data assimilation
frameworks and their high computational cost pose signi-
ficant barriers for. practical applications. Nevertheless,
application of data-driven machine learning, particularly
neural network methods, is rapidly expanding in atmo-
spheric environmental research. Mathematically, the
training process of neural networks can be regarded as
multivariate nonlinear regression, aiming to “learn” any
nonlinear multidimensional function (LeCun et al., 2015;
Goodfellow et al., 2016). Like the ensemble Kalman fil-
ters, the machine learning-based inversions use atmo-
spheric chemical transport model simulations as the
ground truth in the training process to establish a rela-
tionship function between concentrations and emissions.
Compared with traditional data assimilation methods,
pretrained models can be used to estimate emissions,
which require dramatically reduced computational re-
sources. The application of machine learning in emission
inversions is still in the early development stage (Huang
etal., 2021; He T. L. et al., 2022; Li and Xing, 2024).

From the perspective of statistics, the goal of training
processes of neural networks is to optimize the paramet-
ers of interconnected units (often referred to as neurons)
to directly represent the a posteriori probability density
function. Each neuron has two learnable parameters: the
weight (w) and the bias (b). A neuron receives inputs
from all neurons in the previous layer and broadcasts an
activated output to the next layer. For a neuron £ in the
output layer, we can derive:

2k =Zajwjk+bk,

J

(12)

(13)
where w j; represents the weight applied to the output of
neuron j in the previous hidden layer, while b, denotes
the bias adjustment applied to neuron k. z; is the
propagation equation, which sums over the weighted out-
puts of all neurons in the previous layer. g; is referred to
as the activation function, which performs a nonlinear
transformation on the propagated signal.

Before the training begins, the neural networks are
randomly initialized and the initial prediction differs sig-
nificantly from the ground truth. Similar to data assimila-
tion methods, a cost function can be defined as:

a; = gizk),

J(ag—ty) = (ax — t)*/2, (14)

where ¢; stands for the ground truth and a; is the predic-
tion made by neural networks. The gradients of the cost
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function with respect to the weights and biases of each
neuron in the last layer can be expressed as:

0J
8wjk

(15)

= (ar—ty) gz a;.

0J
— = (ar—tp) g(zk). (16)

0by

By setting the gradient to zero, we can backpropagate
and optimize the weights and biases of all the neurons in
the previous hidden layer connected to neuron k. Similar
to the 4D-Var method, the training process is performed
iteratively until the cost function reaches the minimum.

3. Atmospheric pollutant emission inversion

In Section 2, we introduced the main emission inver-
sion methods. This section will summarize the emission
results of atmospheric pollutants obtained by using dif-
ferent inversion approaches. Satellite-based inversion of
atmospheric pollutant emissions has predominantly tar-
geted gaseous species associated with PM,s and O;
formation, including NO,, NH;, HCHO, CHOCHO, SO,
and CO, depending on the detectability of atmospheric
constituents through current remote sensing technologies.
While atmospheric PM, 5 originates from both direct
emissions and secondary chemical production from
gaseous precursors, the predominance of the latter path-
way has limited scholarly efforts in direct PM, s emis-
sion inversion via satellite remote sensing; therefore, we
do not include such studies here.

3.1 Nitrogen oxides

Nitrogen oxides (NO,= NO + NO,) are major air pol-
lutants emitted from both natural and anthropogenic
sources, such as fossil fuel combustion, biomass burning,
soil emissions, and lightning activity. NO, directly im-
pacts human health, and also contributes to the O; pro-
duction via photochemical reactions with VOCs as well
as the formation of nitrate and sulfate PM, 5. The atmo-
spheric lifetime of NO, ranges from a few hours to tens
of hours, with a large seasonal variability (shorter in
summer, longer in winter). NO, is primarily removed
through dry and wet deposition of its oxidation products
(nitric acid and nitrate), which leads to acid deposition
that causes soil acidification, compromises agricultural
productivity, and corrodes infrastructure.

Satellite-based UV/Vis spectrometers enable global
NO, column retrievals. Commonly used satellite instru-
ments include polar-orbiting sensors such as the Global
Ozone Monitoring Experiment (GOME, Martin et al.

VOLUME 39

(2002)), OMI (Boersma et al., 2007), TROPOMI (van
Geffen et al., 2020), and China’s EMI (Zhang C. X. et
al., 2020) and OMS (Wang Q. et al., 2024), as well as
geostationary instruments-such as GEMS (Kim et al.,
2020) and TEMPO (Zoogman et al., 2017). These satel-
lite observations are widely applied to study the lifetime
of NO, and its spatial variability (Zhang et al., 2007;
Duncan et al.; 2016; Jiang et al., 2018) and to derive NO,
emissions using various inversion methods (Lamsal et
al., 2011; Miyazaki et al., 2020).

Continuous progress have been made in satellite-based
NO, emission inversions. Given the short lifetime of
NO,, inversion studies on NO, often employ the local
mass balance method, which neglects the influence of re-
gional transport on NO, column concentrations. As such,
the mass balance method is more suitable for emission
inversions with relatively low spatial resolutions ranging
from tens to hundreds of kilometers (Lin and McElroy,
2011; Lin, 2012; Lin et al., 2015; Chen Y. F. et al., 2021;
Zhu et al., 2021; Li H. et al., 2024). The mass balance
method has also been explored and applied to regional
high-resolution NO, emission inversions (Yang et al.,
2019; Yang Y. et al., 2021). Combining observations
from multiple satellite instruments instead of relying on a
single source can effectively increase the amount of ob-
servational information (Lin et al., 2010; Gu et al., 2014).
The nonlinear response of NO, column concentrations to
NO, emissions (Gu et al., 2016) and the discrepancies in
satellite observations (Yang et al., 2019) have important
influences on NO, emission inversions. By taking ad-
vantage of the rapid inversion by use of the mass bal-
ance method, extensive assessments have been conduc-
ted on the impact of the COVID-19 lockdown on NO,
emissions from various perspectives (Zhang R. X. et al.,
2020; Zhu Y. Z. et al., 2022; Liu et al., 2023).

In addition to the local mass balance, Gaussian mod-
els and their variants, operationally independent of chem-
ical transport models, have also been widely utilized.
These methods are well suited for the rapid assessment of
point source emissions and are frequently applied to NO,
emission inversions for power plants and cities (by treat-
ing cities as point sources). The availability of newer-
generation observation platforms, such as TROPOMI and
GEMS, has further promoted their applications (Zhang et
al., 2015, Liu et al., 2016; Liu F. et al., 2017; Li Y. S. et
al., 2018; Xue et al., 2022; Luo et al., 2023; Tang et al.,
2024a, b; Xu et al., 2024).

Advanced and innovative inversion algorithms have
continually been developed to achieve fast, fine-scale,
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and reliable NO, emission inversion. Kong et al. (2019)
established a 2D atmospheric chemical transport model
(PHLET, 0.05° x 0.05° resolution) with adjoint capabilit-
ies, overcoming the limitations of foreign-developed fast
inversion methods such as Gaussian and 2D divergence
models in characterizing complex emission sources and/
or local nonlinear chemical transport processes. With
PHLET, they achieved OMI-based quantification of sum-
mertime NO, emissions over the Yangtze River Delta
during 2012-2015 (Fig. 1). Kong H. et al. (2022) further
enhanced this method to constrain NO, emissions for
summer 2019 in the whole Chinese mainland with TRO-
POMI data, and they revealed numerous small-to-
medium emission sources omitted in conventional bot-
tom-up inventories. Building on this foundation, Kong et
al. (2023) further quantified NO, emissions over the
Qinghai—Xizang Plateau during summer, and discovered
previously unknown high-intensity NO, sources from re-
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mote plateau lakes, which were linked to microbial pro-
cesses under climate warming. Building on divergence
model approach, Qin et al. (2023a) improved the charac-
terization of local chemical transport processes through
parameter fitting of first-order chemical decay and trans-
port terms. Their new method produced a daily 0.05° x
0.05° resolution NO;emission dataset for China’s En-
ergy Golden Triangle region in 2019. This method was
subsequently applied by Li X. L. et al. (2023) and Liu et
al. (2024) to estimate NO, emissions in Shanxi, China
and to quantify NO, emissions from biomass burning and
rapid urbanization in Southeast Asia. Pan et al. (2023)
developed a NO, emission dataset in China in 2019 at
1x1 km resolution by using the divergence model and
TROPOMI data, and they revealed over 100 super-emit-
ters (primarily factories) missing from existing emission
inventories.

Through systematic comparison of three fast inver-

(a) The inversion process to derive the local net sources
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Fig. 1. Atmospheric NO, emission (kg km h™') inversion based on the two-dimensional (2D) atmospheric chemical transport model (PHLET)
and its adjoint. (a) Schematic diagram of the inversion algorithm. (b) Total a posteriori NO, emissions in the Yangtze River Delta during sum-
mer 2012-2015. The blue crosses indicate where the relative errors exceed 100%. (c) A posteriori NO, emissions from the anthropogenic

sources. Cited from Kong et al. (2019).
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sion approaches (Gaussian, PHLET, and divergence
models) in NO, emission estimates for the North China
Plain, Wang S. J. et al. (2024) found that Gaussian mo-
del is primarily suited for point source emissions but per-
forms poorly in regions with densely distributed emis-
sion sources; the divergence model can quickly identify
major emission source locations but suffers from issues
such as underestimation and negative emissions; and PH-
LET explicitly accounts for atmospheric transport and
nonlinear chemical processes, yielding results that align
well with independent datasets for road network and pop-
ulation distribution.

The application of machine learning to NO, emission
inversion has also been actively explored. Using WRF-
CMAQ simulation datasets, Xing et al. (2022) deve-
loped machine learning models to inversely derive NO,
emissions from OMI observations in 2017 in China, de-
monstrating computational efficiency gains compared to
conventional approaches. Li and Xing (2024) developed
a NO, concentration dataset for China in 2017-2021,
based on the WRF-CMAQ simulation and OMI observa-
tions, and estimated NO, emissions with the developed
NO, dataset. They found that NO, emissions were higher
in winter, but wintertime NO, emissions decreased by
40% in 2020, attributed to emission decline associated
with the COVID-19 and environmental regulations.

3.2 Ammonia

Ammonia (NH3) is the most abundant alkaline gas in
the atmosphere. Its heterogeneous reactions with SO, and
NO, lead to the formation of ammonium nitrate and am-
monium sulfate. NH; in the atmosphere is emitted
primarily from two anthropogenic sources: agricultural
fertilization and livestock waste (Li et al., 2021). Obser-
vational data reveal that regions with intensive agricul-
tural activities and high livestock densities, such as India
and the North China Plain, are global hotspots of atmo-
spheric NH; concentrations. Accurately quantifying the
spatiotemporal distribution of NH; emissions is of criti-
cal scientific and practical importance for atmospheric
enyironmental research and nitrogen management at both
the country and global scales.

Satellite remote sensing serves as the primary ap-
proach for global atmospheric NH; monitoring. Com-
monly used satellite instruments include Tropospheric
Emission Spectrometer (TES; Beer et al., 2008), Atmo-
spheric Infrared Sounder (AIRS; Warner et al., 2016), In-
frared Atmospheric Sounding Interferometer (IASI;
Clarisse et al., 2009), Cross-track Infrared Sounder
(CrIS; Shephard and Cady-Pereira, 2015), and China’s
GIIRS (Zeng et al., 2023). The associated satellite data-
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sets are applied to monitor the spatiotemporal variability
of atmospheric NH; concentrations (Ge et al., 2020,
Deng et al., 2021), and are combined with atmospheric
chemical models and data assimilation techniques to de-
rive NH; emissions (Sitwell et al., 2022).

Data assimilation methods are often employed to con-
duct satellite-based atmospheric NH; emission inversion.
For example, Zhu et al. (2013) and Zhang et al. (2018)
integrated the GEOS-Chem adjoint model and TES ob-
servations to estimate NH; emissions in the United States
and: China. Jin et al. (2023) developed a 4D ensemble
variational (4DEnVar) data assimilation system based on
the GEOS-Chem model, achieving high-efficiency NH;
emission inversion with localized analysis techniques. A
top-down estimate of NH; emissions in China was ob-
tained in Jin et al. (2023), revealing severe underestima-
tions (approximately 50% assimilation increments) in the
MEIC inventory over North, East, and Northwest China.

In addition to data assimilation, local mass balance
methods have been explored for NH; emission inver-
sions (Chen et al., 2023, Wen et al., 2024). Luo et al.
(2022) established a linear model linking NH; emissions
to concentrations through atmospheric simulations, gen-
erating a global monthly NH; emission dataset at 4° x 5°
resolution (2008-2018) using IASI observations. Liu et
al. (2022a) synergized IASI/GIIRS observations with
GEOS-Chem simulations to perform a rapid estimation
of NH; emissions over 2008-2019 in China. Liu et al.
(2022b) constrained livestock NH; emissions in Hebei,
China using IASI observations, revealing a 5.8% annual
growth in 2008-2020 as well as seasonality (higher in
spring and summer) in NH; emissions. Furthermore, the
Gaussian model method was also successfully implemen-
ted for NH; emission inversion—for example, Xie et al.
(2024) quantified warm-season (May—September) NH;
emissions and atmospheric lifetimes in Urumqi and
Golmud (2008-2023) using IASI observations, provid-
ing critical insights into urban NH; emissions across
western China.

3.3 Volatile organic compounds

Formaldehyde (HCHO) and glyoxal (CHOCHO), de-
tectable by satellite instruments, serve as proxies for
tracking VOC emissions. HCHO predominantly origin-
ates from secondary oxidation of biogenic or anthropo-
genic VOCs and combustion of organic matter; and
CHOCHO is produced from less amount of VOC spe-
cies with lower yield. With atmospheric lifetimes of a
few hours, HCHO and CHOCHO undergo rapid removal
via OH-driven oxidation, photolysis, and deposition pro-
cesses, making them reliable indicators of regional VOC
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emissions, as well as proxies for quantifying VOC emis-
sions. Current spaceborne capabilities for HCHO/
CHOCHO monitoring include OMI (Gonzalez Abad et
al., 2015), TROPOMI (De Smedt et al., 2018), Ozone
Mapping and Profiler Suite (OMPS, Nowlan et al.
(2023)), GEMS (Kwon et al., 2019), TEMPO (Zoogman
et al., 2017), and China’s EMI (Su et al., 2022). These
satellite datasets are extensively applied to assess the spa-
tiotemporal distributions of VOCs (Chen et al., 2019),
anthropogenic emissions (Sun et al., 2021; Pu et al,
2024), and the formation of tropospheric O; pollution
(Wang W. N. et al., 2021; Ren et al., 2022).

VOC emission inversion studies have largely taken
advantage of the nearly linear relationship between VOC
emissions and HCHO and CHOCHO concentrations.
Early research by Fu et al. (2007) constrained biogenic,
anthropogenic, and biomass burning VOC emissions
across Asia through linear regression techniques combin-
ing GEOS-Chem simulations with HCHO column re-
trievals; and Zhu et al. (2014) analyzed summertime
HCHO enhancements (2005-2008) in OMI-observed
downwind plumes relative to regional baselines. Re-
cently, Wang F. et al. (2021) implemented local mass
balance approaches with TROPOMI data to constrain
VOC emissions in eastern China; Li W. et al. (2023) im-
plemented local mass balance approaches with TRO-
POMI data to resolve VOC and NO, emissions in Qing-
hai Province; and Feng et al. (2024) revealed 50% over-
estimations in a priori VOC emission inventories in
China in summer 2022 through ensemble Kalman filter
assimilation of TROPOMI observations.

In recent years, there has been a growing focus on es-
timating point source emissions of VOCs. For example,
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Zuo et al. (2023) identified global HCHO point sources
using TROPOMI observations. They aligned the ob-
served HCHO plumes with wind fields and employed a
Gaussian model to fit HCHO concentrations along down-
wind plumes. This approach allowed the estimation of
the production rates of HCHO from point sources relat-
ive to background . levelss (Fig. 2), demonstrating a
strong correlation with VOC emissions from the EDGAR
inventory (7 = 0.76). The joint analysis of HCHO and
CHOCHO observations offers unique advantages for
VOC source attribution, given their differential yields
across VOC precursors. This multi-species strategy is ex-
emplified by Cao et al. (2018): By assimilating both
HCHO and CHOCHO retrievals into GEOS-Chem ad-
joint framework, they uncovered stronger seasonal vari-
ability in VOC emissions in China than inventory estim-
ates, highlighting the necessity of joint assimilation of
HCHO and CHOCHO observations to distinguish VOC
species and to better constrain anthropogenic sources.

3.4  Sulfur dioxide

Sulfur dioxide (SO,) in the atmosphere is emitted
mainly by the combustion of fossil fuel and the pro-
cessing of sulfur-containing raw materials. Volcanic
eruptions can also release substantial amounts of SO, in-
to the atmosphere. Atmospheric SO, poses threats to hu-
man health and, through oxidation to sulfate aerosols,
impacts global environmental and climate systems. Satel-
lite instruments play a key role in monitoring atmospher-
ic SO,. Commonly used sensors include OMI (Theys et
al., 2015), OMPS (Yang et al., 2013; Li C. et al., 2024),
TROPOMI (Theys et al., 2017), China’s EMI (Xia et al.,
2021) and OMS (Wang Q. et al., 2024) on polar orbiting
satellites, as well as GEMS (Kim et al., 2020) and
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TEMPO (Zoogman et al., 2017) in geostationary orbit.
Extensive SO, observations are vital for understanding
the spatiotemporal distribution of SO, (Wei et al., 2023),
improving the parameterization schemes of SO, model
simulations, and estimating SO, emissions (Hu et al.,
2022; Weismann et al., 2023).

Gaussian models or other plume methods are often
employed to estimate SO, point source emissions based
on satellite observation data. For instance, Wang et al.
(2015) employed OMI SO, observations with a refined
2D Gaussian fitting method to quantify emission reduc-
tion before and after the implementation of flue gas de-
sulfurization (FGD) facilities at 26 coal-fired power
plants in China. Their results revealed an average SO,
emission reduction of 56% = 21% between 2005 and
2010 due to FGD adoption. Cai et al. (2022) estimated
SO, emissions from the 2019 Raikoke volcanic eruption
to be about 2.1 Tg by integrating AIRS and TROPOMI
satellite data.

SO, emissions can also be constrained with the 4D-
Var method by assimilating satellite observations. For
example, Wang et al. (2016) inverted anthropogenic SO,
emissions by assimilating OMI observations into the
GEOS-Chem adjoint model, and estimated the impact of
emission control measures during the 2008 Beijing
Olympics. They reported an approximate 20% decline in
SO, emissions during the event and demonstrated that a
posteriori emission estimates significantly improved
model accuracy in simulating near-surface concentra-
tions and vertical column densities of SO,. In addition,
local mass balance methods have been successfully ap-
plied for SO, emission inversion. Li M. et al. (2018) es-
timated SO, and NO, emissions in China for 2005 and
2010 using OMI data, revealing that a priori emission in-
ventories underestimated SO, emissions. They attributed
this underestimation to inaccurate estimates of civil bulk
coal emissions.

3.5 Carbon monoxide

Carbon monoxide (CO) is a primary air pollutant gen-
erated during incomplete combustion and the oxidation
of VOCs in the atmosphere, and it is primarily removed
through oxidation by OH. CO can produce O through
photochemical reactions, thereby having a significant im-
pact on global OH levels and the oxidative capacity of
the atmosphere. With a tropospheric lifetime of roughly
two to three months, CO can be transported regionally or
even intercontinentally, making it a widely used tracer
for studying air pollutant transport. CO concentrations in
the atmosphere can be measured by satellite-based re-
mote sensing instruments, including the SCanning Ima-
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ging Absorption SpectroMeter for Atmospheric CHarto-
graphY (SCIAMACHY; Bogumil et al., 2003), AIRS
(McMillan et al., 2005), IASI (George et al., 2009), MO-
PITT (Deeter et al., 2003),-and TROPOMI (Landgraf et
al., 2016). These observations are widely used to invest-
igate the lifetime of CO and its spatiotemporal variations
(Liu et al., 2013; Hedelius et al., 2021), and inversions of
CO emissions (Jiang et al., 2011; Miyazaki et al., 2020).

As early as 2007, Lin et al. (2007) inverted global at-
mospheric CO emissions using the MOZART model and
MOPITT observations. Recent studies have increasingly
employed data assimilation methods. For instance, Jiang
et al. (2017) developed a dual-step inversion method
combining Kalman filtering and 4D-Var to eliminate
model biases related to long-range transport. By assimil-
ating MOPITT observations, they inferred global CO
emissions during 2001-2015. Zheng et al. (2018) used a
4D-Var method based on the LMDZ-INCA model to as-
similate MOPITT data for East Asia for 2005-2016, re-
vealing that a priori inventories underestimated the de-
cline rate of CO emissions in China. Tang et al. (2023)
extended the widely used GEOS-Chem adjoint model
(4D-Var) by adding support for updated meteorological
datasets and emission inventories. Using this upgraded
framework, their subsequent studies assimilated MO-
PITT observations to derive global atmospheric CO
emissions for 2003-2022, revealing that anthropogenic
emission reductions drove CO declines at mid-low latit-
udes in the Northern Hemisphere, while wildfires elev-
ated CO levels at high latitudes.

Furthermore, Gaussian models have been tried by
Chinese researchers for rapid monitoring and quantifica-
tion of CO point-source emissions. For example, Tian et
al. (2022a) combined a Gaussian model with TROPOMI
observations to estimate CO emissions from four indus-
trial point sources in China and India. Tian et al. (2022b)
subsequently applied this method to quantify CO emis-
sions from 14 Chinese industrial point sources, finding
that most sources exceeded inventory estimates.

4. Inversion of GHG sources and sinks

Current satellite instruments can effectively monitor
changes in CO, and CH, concentrations in the atmo-
sphere, enabling inversions of corresponding emissions
and carbon sinks. However, constrained by technical lim-
its, there are currently no satellite observations of nitrous
oxide (N,O), an important greenhouse gas. Building
upon the emission inversion methods introduced in Sec-
tion 2, this section provides a review of the inversion res-
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ults on CO, and CH,.

4.1 Carbon dioxide emissions

Carbon dioxide (CO,) is the most important anthropo-
genic GHG, with its global mean atmospheric mixing ra-
tio surging from 280 ppm during the pre-industrial era to
423 ppm in 2023. Anthropogenic activities dominate
CO, emissions, where fossil fuel combustion and land-
use changes contribute approximately 88.1% and 11.9%,
respectively (Friedlingstein et al., 2023). Since the begin-
ning of the 21st century, infrared satellite remote sensing
has driven rapid advancements in monitoring global
column-averaged CO, mixing ratios (XCO,). Key space-
borne instruments include GOSAT (Butz et al., 2011)
and GOSAT-2 (Suto et al., 2021), those used in the Or-
biting Carbon Observatory missions (OCO-2 and OCO-
3; Crisp et al., 2017; Eldering et al., 2019), as well as
China’s TanSat (Liu et al., 2018; Hong et al., 2022) and
DQ-1 (the world’s first active carbon monitoring satel-
lite; Han et al., 2018). These observations are widely
used to characterize the spatiotemporal distribution and
underlying mechanisms of atmospheric CO, (Bai et al.,
2010; He et al., 2020), providing critical data support for
satellite-based emission inversions (Wu et al., 2020; Nas-
sar et al., 2021).

Nonetheless, the long atmospheric lifetime of CO, (at
least several decades) combined with its elevated back-
ground concentration results in weak enhancement sig-
nals from anthropogenic emissions (typically < 5 ppm).
The enhancement signals are often comparable to satel-
lite observation uncertainties (Nassar et al., 2017; Reuter
et al.,, 2019), posing significant challenges for direct
emission inversions. Recent progress in satellite sensor
technology and the emergence of advanced inversion al-
gorithms enable multi-scale CO, emission estimation.

Satellite-based CO, emission inversion methods in-
clude data-driven and model-driven approaches. The
data-driven method integrates satellite-derived XCO,
data with local wind field information under steady-state
assumptions. to estimate emissions from large point
sources and isolated cities (Hu et al., 2021; Guo et al.,
2023; Lin et al., 2023). For example, Wang Y. et al.
(2019) developed a plume monitoring inversion frame-
work to quantitatively characterize city-level and point-
source CO, emissions and associated uncertainties
(Wang Y. L. et al., 2020). Employing OCO-2 observa-
tions in 2014-2019, Zheng et al. (2020a) applied a Gaus-
sian plume model to correlate XCO, enhancement sig-
nals with adjacent anthropogenic sources, quantifying
CO, emissions from 60 plume cases across 46 Chinese
cities. Their results revealed an annual total emission of
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1.3 Gt, which accounted for 13% of China’s total and
showed better consistency with the domestic MEIC in-
ventory than global inventories (EDGAR, ODIAC).

Model-driven approaches typically employ 3D Eule-
rian models (e.g., meteorology—chemistry online coupled
model, WRF-Chem), Lagrangian models (e.g., time-re-
versed Lagrangian particle dispersion model X-STILT
and coupled’ meteorology-particle dispersion model
WREF-FLEXPART). Yang et al. (2017) inverted CO,
emissions in China in 2012 using GOSAT satellite data
combined with an ensemble Kalman filter. He et al.
(2024) compared three inversion methodologies, includ-
ing the data-driven Gaussian plume model and two max-
imum likelihood approaches implemented with WRF-
Chem and WRF-FLEXPART, respectively. Based on
OCO-2 observations in 2014-2021, they estimated CO,
emissions for 10 power plants in China and 13 power
plants in the United States, demonstrating the limited ap-
plicability of Gaussian plume models in complex wind
field environments. Furthermore, machine learning meth-
ods have also been implemented to perform CO, emis-
sion inversion; for example, Zhang S. Q. et al. (2023) de-
veloped a machine learning model integrating multi-
satellite XCO, observations and geographical data to as-
sess anthropogenic CO, emissions across China.

Given the limitations of carbon satellites in terms of
data volume, quality, and weak XCO, enhancement sig-
nals, researchers have explored the use of co-emitted air
pollutants (CO, NO,, etc.) as tracers to develop integ-
rated carbon-pollutant inversion techniques. For ex-
ample, Zheng et al. (2021) inverted CO and CO, emis-
sions using MOPITT observations and analyzed wildfire
impacts on global carbon emissions; and Zheng et al.
(2023) further quantified boreal wildfires’ contribution to
global emissions, revealing that Northern Hemisphere
high-latitude wildfires accounted for 23% of global bio-
mass burning emissions in 2021.

Compared to CO,, NO, exhibits a much shorter atmo-
spheric lifetime (hours) and higher satellite measurement
coverage (for NO,), enabling much better detection of
local anthropogenic emission signals to facilitate source-
concentration relationship modeling for CO, estimation.
Zhang Q. Q. et al. (2023) employed a stacked-column
model to infer NOy emissions in Wuhan based on satel-
lite NO, observations, and then estimated CO, emissions
using inventory-based CO,/NO, ratios. They detected
significant emission reductions in early 2020 that aligned
with COVID-19 lockdown measures. Zheng et al.
(2020b) developed a joint carbon-pollutant emission in-
version system for daily anthropogenic emissions, by in-
tegrating near real-time satellite NO, observations, a
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chemical transport model, and emission inventories at 25
km resolution (Fig. 3). They revealed dramatic anthropo-
genic CO, emission declines during China’s pandemic
lockdowns; and their subsequent studies further achieved
long-term monitoring and inversions for anthropogenic
carbon—pollutant emissions (Li H. et al., 2023).

4.2 Carbon dioxide sinks

Terrestrial ecosystems absorb atmospheric CO,
through photosynthesis while releasing CO, through res-
piration, with the net flux manifested as a carbon sink
that plays a vital role in slowing the rise of atmospheric
CO, concentrations and mitigating global warming. The
2023 global carbon budget report (Friedlingstein et al.,
2023) shows that terrestrial ecosystems served as a glo-
bal carbon sink of 3.3 + 0.8 PgC yr ' in 2013-2022, off-
setting approximately 34% of global fossil fuel CO,
emissions. Moreover, terrestrial carbon sinks exhibit pro-
nounced spatiotemporal variations driven by climate
change, nitrogen deposition, and the CO, fertilization ef-
fect, constituting a primary driver of seasonal and inter-
annual fluctuations in global atmospheric CO, concentra-
tions (Le Quéré et al., 2013). Accurate quantification of
terrestrial carbon sinks and their spatiotemporal variabil-
ity therefore has significant scientific importance. The
deployment of Chinese and international carbon-monitor-
ing satellites including GOSAT, OCO-2, and TanSat has
provided valuable observational data for inverting ter-
restrial carbon sinks. It has been demonstrated that satel-
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lite-based XCO, data significantly enhance regional-
scale estimates of terrestrial carbon sinks (Deng et al.,
2014; Wang H. et al., 2019; Wang H. M. et al., 2022), by
reducing uncertainties in carbon sink estimates, enabling
quantitative assessments of extreme climate impacts on
carbon sinks (Liu J. J. et al., 2017; Wang J. et al., 2022;
He et al., 2023a), and improving understanding of cli-
mate change effects on terrestrial carbon sinks.
Significant progress has been made in satellite-based
terrestrial carbon sink inversions. Yang D. et al. (2021)
and'Wang H. M. et al. (2022) conducted inversions of
global and regional carbon sinks using XCO2 products
from the domestically developed TanSat satellite. With
their self-developed Glo-bal Carbon Assimilation Sys-
tem version 2 (GCASv2), Jiang F. et al. (2022) assimil-
ated GOSAT XCO, observations to produce a dataset (1°
resolution) of monthly global terrestrial carbon sink for
2010-2019. Kong Y. et al. (2022) assimilated OCO-2
XCO, observations with the THU system, which is based
on the GEOS-Chem model and ensemble Kalman filters,
to estimate terrestrial carbon sinks on global and regio-
nal scales. Employing the independently developed
GONGGA system, Jin et al. (2024) constructed a global
terrestrial ecosystem carbon flux dataset for 2015-2022
by assimilating OCO-2 XCO, data. Li J. et al. (2024)
conducted inversions of global carbon sinks in 2019—
2021 using OCO-2 XCO, and surface CO, observations.
Furthermore, the GCASv2, GON-GGA, and THU sys-
tems were collectively incorporated into the Global
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Carbon Project in 2023, demonstrating China’s growing
contribution and leadership in inversion-based global
carbon budget estimation (Friedlingstein et al., 2023).
Regarding regional terrestrial carbon sinks and their
variability, He et al. (2023b) estimated that China’s ter-
restrial carbon sink ranged between 0.34 PgC yr!
(GCASV2) and 0.47 £ 0.16 PgC yr ! (median + standard
deviation; OCO-2 v10 MIP) in 2015-2019. They identi-
fied southern China as the region with the strongest an-
nual carbon sink (Fig. 4), while peak carbon sink periods
during the growing season occurred in Northeast China
and other major agricultural zones. Kou et al. (2023) es-
timated China’s 2016 terrestrial carbon sink to be 0.47
PgC yr ! using GOSAT XCO, observations. Wang J. et
al. (2022) analyzed global terrestrial carbon sink based
on the assimilation of GOSAT observations, and clari-
fied for the first time the impacts of the 2019 positive In-
dian Ocean Dipole event on terrestrial carbon sinks
across the Indian Ocean. Their study revealed that this
event severely reduced carbon sinks in the Asia-Pacific
region but significantly enhanced sinks in India and
Africa, with impacts comparable in magnitude to those of
the 2015/16 extreme El Nifio event. Chen H. et al. (2024)
assessed the effects of the 2020-2021 consecutive
droughts and large-scale wildfires in southwestern North
America. They showed that these events led to a drama-
tic CO, loss from terrestrial ecosystems (95.07 TgC), ex-
ceeding 80% of the region’s annual carbon sink capacity.
Current limitations in satellite observations, including
spatial coverage, revisit frequency, data volume, and
measurement accuracy, result in'substantial uncertainties
in regional terrestrial carbon ‘sink estimates. Inversion
results are also influenced by inverse frameworks, a pri-
ori emissions and carbon sink fluxes. For example, the
common assumption that anthropogenic emissions are
fully known introduces unquantifiable errors in estimat-
ing both the magnitude and spatial distribution of regio-
nal carbon sinks. Furthermore, inconsistencies among
satellite XCO, datasets remain a critical factor contribut-
ing to discrepancies in inversion results. For China’s car-
bon sinks, inversion-based estimates (—0.3 to —1.11
PgC yr ") vary widely with significant disagreements in
spatial distributions (Fig. 4) (Jiang et al., 2016; Wang J.
et al., 2020; He W. F. et al., 2022; He et al., 2023b).
Zhang L. Y. et al. (2023) used results from 12 ecosystem
models as a priori fluxes to estimate terrestrial carbon
sinks based on GOSAT XCO, data. Their study demon-
strated that GOSAT observations are only sufficient for
reliable estimates at continental scales, while subcontin-
ental or smaller-scale inversions remain heavily depend-
ent on the selection of a priori fluxes due to limited ob-
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servational constraints. Piao et al. (2022) highlighted in
their review that advancing China’s next-generation high
spatiotemporal resolution GHG monitoring satellites,
alongside the establishment of high-resolution radiative
transfer models and molecular spectroscopy databases, is
imperative to improve the accuracy of XCO, observa-
tions and enhance the reliability of terrestrial carbon sink
inversions in China.

4.3 Methane

Methane (CH,) is the second-most important anthro-
pogenic GHG, following CO,. Its global warming poten-
tial is 27 times that of CO, over a 100-yr horizon and 84
times over a 20-yr horizon (Intergovernmental Panel on
Climate Change, 2021). Approximately 60% of global
CH, emissions originate from human activities, primar-
ily the oil and gas industry, coal mining, livestock farm-
ing, rice agriculture, landfills and wastewater treatment.
Atmospheric CH, concentrations can be monitored via
satellite remote sensing with commonly used instru-
ments such as SCTAMACHY (Frankenberg et al., 2005),
GOSAT and GOSAT-2 (Parker et al., 2020; Suto et al.,
2021), and TROPOMI (Lorente et al., 2021). China’s
Fengyun and Gaofen satellites are playing increasingly
important roles in CH, monitoring (Chen L. F. et al,,
2021; Yao et al., 2022).

Satellite-based atmospheric CH, emission inversions
have been used to quantify global CH, sources and sinks
and to assess CH, emission inventories in China (Zhu S.
H. et al., 2022; Zhang et al., 2024). For example, Zhang
Y. et al. (2021) quantified global CH, emissions and
sinks from 2010 to 2018 using GOSAT observations. Lu
et al. (2022) conducted high-resolution inversion ana-
lyses of North American CH, emissions by integrating
GOSAT satellite data with ground-based and airborne in
situ measurements. Zhang et al. (2022), Liang et al.
(2023) and Zhao et al. (2024) developed satellite-based
high-resolution regional inversion frameworks to estim-
ate the spatial distribution and temporal trends of CH,
emissions in China. Their findings revealed that China’s
CH, emissions are linked to energy, agricultural, and en-
vironmental policies, with an upward trend post 2010 and
a decelerated growth rate after 2016.

In-depth studies have been conducted on energy-re-
lated CH4 emissions from oil and gas industries (Zhang
Y. Z. et al., 2020; Shen et al., 2022, 2023; Lu et al.,
2023; Li F. et al., 2024) and coal mining (Bai et al.,
2024; Hu et al., 2024; Tu et al., 2024). Satellite-based in-
version estimates indicate that China’s total coal mine
and oil/gas CH, emissions are approximately 20% lower
than those derived from bottom-up methods. Specific-
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ally, inversion-derived coal mine emissions are about
12.0-17.5 Tg yr ', while oil/gas emissions are about
0.72-5.50 Tg yr!. Satellite observations have signific-
antly reduced estimation biases compared to bottom-up
approaches. Be noted that most studies rely on GOSAT
data, which suffer from low spatial coverage (with a 260-
km gap between adjacent observation tracks) and a 3-day
revisit cycle, limiting its ability to pinpoint individual an-
thropogenic emission sources at regional scales. These
studies are often conducted at coarse spatial resolutions
(200—400 km) (Lu et al., 2021a; Zhang Y. et al., 2021),
limiting their ability to differentiate coal mine emissions
from other sources. Moreover, the choice of a priori in-
ventory influences inversion results, particularly under
sparse satellite data conditions. Recent TROPOMI-based
inversions have estimated China’s coal mine CH, emis-
sions at 15-18 Tg yr ' with improved spatial resolution
(~50 km) (Chen et al., 2022; Liang et al., 2023; Shen et
al., 2023), and have detected individual point sources in
Shanxi Province (Han et al., 2024). Qin et al. (2023b)
proposed integrating multi-source satellite remote sens-
ing and inversion algorithms to develop a coal industry
CH, emission inventory for China at two distinct scales

including mining clusters and individual mines.

Overall, state-of-the-art satellite remote sensing demon-
strates the high timeliness and spatial resolution of CH,
emission inversions, underscoring their growingly im-
portant role in CH, mitigation and carbon neutrality. Fu-
ture GHG monitoring systems should integrate point-
source detection/early warning with regional inventory va-
lidation to establish a multi-tier observational framework.

5. Summary and biliometric analysis

In summary, substantial progress has been made by
Chinese researchers in developing and applying satellite-
based emission inversion algorithms for atmospheric pol-
lutants and GHGs.

NO, emissions have been the most studied target
(37.5% of the surveyed papers), with primary inversion
methods including local mass balance, Gaussian models,
divergence models, and the adjoint of 2D chemical trans-
port models (Fig. 5). The two primary GHGs, CO, and
CHy,, account for 21.9% and 17.7% of the inversion stud-
ies, respectively. For CO,, the main inversion methods
employed are ensemble Kalman filters and Gaussian
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models, whereas 3D-Var is predominantly used for CHy.
Despite both being long-lived GHGs, the significant
methodological divergence between CO, and CH, inver-
sions necessitates further research to evaluate its impact
on emission assessments. Less attention has been given
to pollutants such as NH;, CO, VOCs, and SO,. NH;
studies primarily employ local mass balance and 4D-Var;
CO relies on 4D-Var, 3D-Var, and Gaussian models;
VOC:s utilize diverse methodologies; and SO, predomin-
antly applies Gaussian models. Overall, local mass bal-
ance, Gaussian models, 3D-Var, ensemble Kalman filter
and its variants are the most widely used techniques
(Fig. 5). Less prevalent approaches include 4D-Var, diver-
gence models, 2D model adjoint, and machine learning.
The distinct atmospheric lifetimes of GHGs and pol-
lutants significantly influence the selection of inversion
methods. For long-lived GHGs, emission inversions must
account for long-range transport, making model-simula-
tion-based data assimilation methods the predominant
choice. For short-lived air pollutants, regional transport
can often be neglected, enabling the use of simplified
methods independent of model simulations, but accur-
ately estimating their lifetimes and spatiotemporal vari-
ability remains a critical challenge. Specifically, data as-
similation methods (4D-Var, 3D-Var, ensemble Kalman
filter and its variants) were applied predominantly to
GHGs (CO, and CH,) inversions, constituting 73% of
the GHG studies. In contrast, simplified methods (local
mass balance, Gaussian models, divergence models, and
2D model adjoint) dominate atmospheric pollutant (NO,,
NH;, VOCs, SO,, and CO) inversions, accounting for
83% of the studies. It is worth noting that, while the 3D
model-based and model-independent methods differ

(a) Inversion methods and species
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fundamentally in principle, their applied species show
little difference. As/shown in Fig. 5, 4D-Var has been
leveraged to invert emissions of three pollutants and two
GHGs, and Gaussian models have been applied to five
pollutants and two GHGs.

The selection of inversion methods and target species
is closely linked to advancements in environmental pro-
tection policies, computational technologies, and envir-
onmental monitoring systems, exhibiting a clear histori-
cal evolution trend. As shown in Fig. 6, applications of
local mass balance and data assimilation methods have
remained stable over time, while the two-dimensional di-
vergence model has seen steady growth since 2022. The
use of Gaussian models surged rapidly from 2021, sur-
passing traditional inversion methods by 2024. Machine
learning-based inversions, an emerging approach in 2022,
remain in their exploratory phase. From the perspective
of target species, NO,, a dominant atmospheric pollutant,
has historically been the most studied. Driven by the ur-
gent need to better understand climate change, the atten-
tion to GHGs (CO, and CH,) has risen sharply since
2020. Between 2007 and 2017, one paper was published
per year on satellite-based emission inversions on aver-
age, whereas annual publication surged to approximately
18 papers during 2022-2024, reflecting explosive growth
in this research field.

We emphasize that while this review has endeavored
to comprehensively survey Chinese authorship through
extensive literature survey, certain omissions may exist
due to practical constraints. The limitations could affect
the analysis’ completeness and accuracy. We apologize
for any oversights, and welcome corrections, particularly
regarding critical studies not included.

(b) Species
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Fig. 5. (a) Inversion methods and (b) target species in the cited papers by Chinese researchers (first affiliation being a Chinese domestic institu-
tion). The 3D-Var, 4D-Var, ensemble Kalman filter and its variants are categorized as data assimilation methods; the adjoint of the 2D PHLET
model, divergence model, Gaussian model, and local mass balance method are categorized as simplified inversion methods.
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6. Discussion and outlook

Satellite-based emission inversions face both chal-
lenges and opportunities. The 3D chemical transport
models can simulate physical and chemical processes
comprehensively, making assimilation methods based on
these models theoretically applicable to all types of air
pollutants and GHGs. Yet, the high computational re-
source demand limits the resolution of assimilation res-
ults, making it difficult to meet fine-scale environmental
management needs. Additionally, data assimilation is
sensitive to (systematic) errors in prior emission data,

(a) Inversion method (2007-2024)
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and is difficult to handle missing emission sources wi-
thin prior inventories. Data-driven methods such as Gaus-
sian and 2D divergence models do not rely on chemical
transport models-but are still grounded in physical con-
straints like mass conservation. These methods do not re-
quire prior emission information and can effectively
identify missing emission sources in existing emission
datasets. The emergence of new-generation high-preci-
sion observation platforms like TROPOMI and GEMS
has further promoted their application. However, these
data-driven methods are difficult to characterize the ef-
fects of nonlinear chemical processes, which may lead to
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Fig. 6. Historical evolution of (a) inversion methods and (b) target species in the cited papers by Chinese researchers (first affiliation being a
Chinese domestic institution). Be noted that the divergence method in Lin et al. (2007) involved chemical transport model, which is different
with recent applications of divergence methods that are independent of model simulations.
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unreasonable inversion results. For instance, divergence
models might produce negative emissions. Through the
development of inversion methods, multiple advanced al-
gorithms have been established, some from scratch, to
enhance the reliability of inversion results. Given the
complementary strengths and weaknesses of model-dri-
ven and data-driven inversions, their synergy may open
new pathways to diagnose/constrain error sources, thus
improving the accuracy of model-driven inversions.

Satellite-based emission inversion results are influ-
enced by both random errors and systematic biases inher-
ent in satellite observations and inversion algorithms.
Random errors can be mitigated through expanded obser-
vational data or optimized error covariance matrices, yet
addressing systematic biases (unknown in general) re-
mains an unresolved critical challenge. Leveraging
shared emission sources and chemical linkages among
different constituents represents a feasible solution, and
attempts have been made in China and elsewhere. From a
Bayesian perspective, the addition of independent obser-
vational sources can reduce the variance of a posteriori
probability distribution. Thus synergy of different types
of observational systems becomes paramount—satellites
deliver expansive spatial coverage, while ground-based
networks supply high-frequency continuous data (Che et
al., 2015). Important progress has been made in ground
network-based inversions for pollutants and GHGs
(Huang et al., 2021; Wu et al., 2023; Zhong et al., 2023;
Zhou et al., 2023; Feng et al., 2024). Integrating satellite
and ground-based observations to construct a more com-
prehensive representation of atmospheric processes is ex-
pected to reduce the influence of systematic biases.

As an emerging methodology in recent years, ma-
chine learning has garnered increasing attention and ad-
option for emission inversion. It should be noted that ma-
chine learning primarily establishes correlation-based
mapping functions among input and output variables
without explicitly representing physical and chemical
processes, potentially leading to inaccurate estimation of
pollutant emissions. Future research should prioritize the
synergistic integration of physics-based models and ma-
chine learning techniques to develop hybrid assimilation
algorithms, enabling more robust and comprehensive
utilization of observational data. Furthermore, incorpor-
ating additional data such as fine-resolution road net-
works and thermal hotspots, may overcome the inherent
limitations of satellite observations, such as resolution,
coverage and accuracy, thereby enhancing the spatiotem-
poral resolution and reliability of inversion-derived emis-
sion datasets.

Given the mentioned progress and achievements, non-
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etheless, China’s emission inversion research efforts are
limited by multiple factors such as a relatively late start
and a shortage of field experts. Many of the inversion
studies have employed the existing theory and methods,
with few developed original algorithms. Due to concerns
about inversion uncertainties and other factors, the satel-
lite-based emission inversion data have been used mainly
as supplements to the conventional “bottom-up” emis-
sion inventories or process models; and there is a lack of
long-term, multi-constituent, publicly available emission
inversion datasets similar to emission inventories. Satel-
lite-based inversion relies on high-quality atmospheric
concentration data. In general, China’s satellite-based at-
mospheric environmental remote sensing capabilities still
lag behind those in Europe and North America in terms
of satellite hardware, spectral data quality, concentration
retrieval accuracy, and the level of data openness and
sharing. Consequently, current satellite-based inversions
in China predominantly rely on foreign satellite spectral/
concentration data, with underdeveloped capabilities for
a fully integrated spectrum-concentration-emission inver-
sion system chain using domestic platforms. Further-
more, the absence of satellite observations for N,O re-
mains a global challenge.

Encouragingly, significant progress has been made in
recent years by the Chinese academic community in de-
veloping original algorithms, constructing domestic data-
sets, and enhancing data openness and sharing. China is
rapidly advancing its satellite atmospheric monitoring
capabilities, with domestically developed platforms such
as EMI, GIIRS, TanSat, DQ-1 and OMS now operatio-
nal. Systematic integration of ground-based, aircraft and
mobile observations, coupled with enhanced satellite—
ground calibration and integrated air—space—ground as-
sessment, would significantly elevate domestic satellite
data quality and atmospheric monitoring capability. These
efforts would strongly support emission monitoring, in-
version, and evaluation. Now, it comes a new opportun-
ity and mission to develop atmospheric pollutant and
GHG concentration retrieval products based on domestic
satellites and establish a comprehensive emission inver-
sion capability utilizing multi-source domestic and inter-
national satellite data, which will provide crutial data and
scientific support for environmental governance both in
China and globally.

Acknowledgments. The English language in the ini-
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